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Durotaxis: A cause of organ fibrosis and metastatic cancer?
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Directional migration, in which cells move up matrix stiffness

gradients independent of soluble factors (chemotaxis) or matrix‐

bound ligands (haptotaxis), is termed durotaxis (Lo et al., 2000).

Advances in the development of bioengineered matrices with

stiffness gradients have facilitated the study of cell durotaxis in vitro

(Sunyer et al., 2016) and demonstrated the durotactic capacity of

stem (Tse & Engler, 2011), tumor (DuChez et al., 2019), stromal

(Kawano & Kidoaki, 2011), vascular (Isenberg et al., 2009), epithelial

(Happe et al., 2017), and immune cells (Phillipson et al., 2009). These

studies suggested a potential role for durotaxis in cell development,

homeostasis, and disease; however, the relevance and biological role

of durotaxis in vivo remained speculative (Shellard & Mayor, 2021).

The study of durotaxis in vivo has long been limited by the lack of

high‐resolution measurements of spatial variations in matrix stiffness

observed in organs and tissues. Recently, the application of atomic

force microscopy (AFM) in biological studies has enabled the

measurement of stiffness gradients in mouse limb buds (Zhu

et al., 2020), developing Xenopus brains (Barriga et al., 2018), fibrotic

organs (Berry et al., 2006), and desmoplastic tumors (Plodinec,

et al., 2012). These reports demonstrated spatiotemporal associa-

tions between the presence of stiffness gradients and directional cell

migration in vivo. Thus, the lack of genetic and pharmacological tools

that target durotaxis‐specific pathways without affecting other forms

of directional cell migration has limited the study of durotaxis and did

not allow solid conclusions to be drawn regarding the existence and

biological relevance of this process in vivo.

Important new work has identified molecular pathways involved

in the detection of stiffness gradients (Acerbi et al., 2015; Lange &

Fabry, 2013), a process commonly known as “mechanosensing,” which

is regulated by integrins and focal adhesion‐associated proteins

(Goldmann, 2012a, 2012b, 2014). These durotactic sensing mecha-

nisms appear to be dispensable for chemotaxis or haptotaxis (Plotnikov

et al., 2012), and provided an opportunity to investigate the role of

durotaxis in vivo by specifically targeting these integrin‐dependent

mechanosensitive pathways (Lagares et al., 2015; Santos &

Lagares, 2018). These researchers investigated the biological role of

durotaxis in in vivo disease models of lung fibrosis and metastatic

pancreatic cancer, both of which are characterized by the presence of

stiffness gradients. In addition, they demonstrated in preclinical

mouse models a selective antidurotactic therapy to modulate disease

severity.

The pathological recruitment of stromal cells to sites of tissue

injury and their subsequent activation into scar‐forming myofibro-

blasts are critical steps in the progressive scarring that underlies

organ fibrosis. While the role of chemotaxis in directing the

recruitment of fibrocytes (Reilkoff et al., 2011), immune cells

(Misharin et al., 2017), and fibroblasts (Kadry et al., 2021; Lagares

et al., 2017a) to sites of fibrosis is well established, the contribution

of durotaxis to tissue fibrogenesis has not been investigated. Areas of

active fibrosis were characterized by extracellular matrix deposition

and localized matrix stiffening, creating stiffness gradients extending

from healthy soft to fibrotic stiff tissues. To characterize the local

spatial distribution of matrix stiffness in fibrotic tissues with

nanoscale precision, in situ AFM nanoindentation was applied with

post hoc image coregistration and picrosirius red staining (Lattouf

et al., 2014) to healthy and fibrotic tissues from mouse models in

lung, skin, and kidney (Guo et al., 2022; Herrera et al., 2018).

Consistent with previous work by Lagares et al. (2017b), mouse

fibrotic tissues exhibited an overall increase in collagen content and

matrix stiffness compared to healthy controls. In lung and kidney

fibrosis, the stiffness gradients are believed to be significantly higher,

which suggests that cell durotaxis may contribute to the onset and

progression of tissue fibrosis in vivo. Further, the genetic targeting of

durotaxis with CRISPR‐Cas9 or pharmacological inhibition of the

FAK‐paxillin protein–protein interaction with the molecule JP‐153

are assumed to affect the disease severity of lung fibrosis and
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metastatic pancreatic cancer (Espina et al., 2022; Hinz & Lagares,

2020; Vincent et al., 2013).

These studies discussed the novel and innovative mechanistic

insight into the role of durotaxis in the development of human

disease identifying durotaxis as a unique disease mechanism driving

lung fibrosis and metastatic pancreatic cancer in mouse disease

models. A major conceptual advance of in vivo durotaxis studies was

mentioned by Berry et al. (2006) during Xenopus embryonic

development. While studies suggest that durotaxis may be a

widespread phenomenon in vivo during embryonic development,

homeostasis, and disease, further research is still required, particu-

larly to characterize the task durotaxis plays in mammals and to

understand how it is regulated in vivo. In this regard, the

identification of durotaxis‐specific inhibitors such as JP‐153 targeting

the FAK‐PaxillinY31/118 pathway may provide answers to the long‐

standing hypothesis that stiffness gradients in fibrotic tissues and

desmoplastic tumors drive cell durotaxis and disease pathology in

vivo (Barriga et al., 2018; Sunyer & Trepat, 2020; Zhu et al., 2020).

These studies gave reason to believe that genetic or pharmacological

inhibition of durotaxis attenuate lung fibrosis and impair pancreatic

cancer metastasis in vivo, suggesting selective antidurotaxis therapy

as a novel approach for the treatment of a variety of human diseases.

More recently, Fan et al. (2024) showed that changes in extracellular

matrix viscoelasticity promote hepatocellular cancer progression

through an integrin‐β1–tensin‐1–YAP mechanotransductive pathway

in animal studies.

In conclusion, more novel biophysical and imaging methods are

needed to dissect the temporal and spatial regulation of durotaxis in

vivo. It may also be possible that other cell types undergo durotaxis

via yet unidentified mechanosensing pathways and play an

unexpected role in cell development, physiology, and disease.

Further, the generation of novel genetic models that modulate

durotaxis‐specific pathways in a cell‐specific manner may allow the

field to further elucidate the biological role and relevance of

durotaxis in vivo.
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